L Lidars ind spoc atlight spooc

Multi-Site Ensemble Turbulence Intensity Cup Equivalent
from ZX Lidars

07/11/2025

L{Lidars




7[)\\( Introducing METICE

Author Alex Woodward, ZX Lidars 07/11/2025
Euan Macdonald, ZX Lidars

ZX Lidars (Zephir Ltd.), accept no responsibility or liability for any use
which is made of this document other than by the Client for the
purpose for which it was originally commissioned and prepared. The
Client shall treat all information in the document as confidential. No
representation is made regarding the completeness, methodology or
current status of any material referred to in this document. All facts
and figures are correct at time of print. All rights reserved.
ZX Lidars® is a registered trademark of Zephir Ltd.

Copyright © 2025 Zephir Ltd.

Local Office: Registered Office:
ZX Lidars, Zephir Limited
Willow End, The Green House
Blackmore Park Rd, Forrest Estate, Dalry,
Malvern, Castle Douglas
WR13 6BD, Kirkcudbrightshire,
UK DG7 3XS

Tel: +44 (0) 1531 651 000
Company No. SC317594
VAT No: 2436926 48



LN

Contents

0 N o o »

Context: The significance of Turbulence Intensity in wind energy

The Challenge: Cross-technology validation and standards divergence
2.1 Competing Standards: DNV vs CFARS vs OEM Criteria

METICE: A new multi-site ensemble approach
3.1 Ensemble of site-specific neural networks
3.2 Validation Results: Performance Across Sites and Conditions

Use cases and applications for industry stakeholders
Deployment and Implementation Guidance
Conclusion: Advancing Lidar Adoption with METICE
References

Links

Unrestricted

Introducing METICE



L

Introducing METICE

Context: The significance of Turbulence Intensity in
wind energy

Turbulence Intensity (Tl) is a fundamental metric in wind energy, defined as the ratio of the wind
speed standard deviation to the mean wind speed over a 10-minute period. It quantifies how
much wind speed fluctuates around its mean, and this variability has critical impacts on wind
turbine design, site suitability, certification, energy yield assessments and turbine performance.
Turbines are engineered to withstand or respond to certain turbulence levels; higher Tl can
increase fatigue loads on turbine components and influence extreme load calculations. During
site suitability analysis, a project’s measured Tl is compared against the turbine’s design limits
(often categorized by IEC turbulence classes) to ensure the selected turbine type and model is
appropriate for the site. Likewise, certification bodies require that Tl at a project site does not
exceed the values used in turbine type certification. Even energy yield assessments (EYA) can
be affected by turbulence - for instance, higher Tl can reduce turbine power output and increase
wake losses, making accurate Tl measurement important for predicting annual energy
production. In short, accurate Tl data is needed to verify that a wind farm’s conditions are within
safe design parameters and to refine performance estimates.

Despite the significant advances in remote sensing devices, and general acceptance of wind speed
measurements from Lidar, TI measurements in industry practice have remained largely “cup-based,”
meaning they rely on cup anemometer data. This is largely because much of the historical standards
and turbine design calculations are based on cup anemometer Tl measurements (denoted Tlcup). A cup
anemometer provides a point measurement of wind speed, and by extension Tl, at the sensor’s
location. By contrast, continuous-wave (CW) Lidars measure wind over a conical volume (scanning a
laser beam at a range of distances and angles) rather than at a single point. Lidar also samples wind
differently in time — a CW Lidar’s 50 Hz scanning or averaging pattern differs from the 1 Hz (or higher)
sampling of a cup — which can filter or smooth out some turbulence. These inherent differences in
spatial sampling and response cause systematic differences between Lidar-derived Tl (Tlcw) and Tlcup
(Kelberlau and Mann, 2019).

Generally, as height increases and a Lidar scans over a larger sampling volume, Tlcw underestimates
the variance of the wind as spatial averaging smooths out small scale turbulence and acts like a low
pass spatial filter (Sathe et al., 2011). This is particularly pronounced for highly stratified conditions (e.g.
stable) where the dominant turbulence structures are small and high frequency. It is less noticeable for
unstable conditions where Tl is dominated by large eddies that are well captured in the probe volume -
here the agreement is better.

These nuances have so far meant that the industry continues to treat Tlcup as the reference standard,
and any Lidar measurements must be translated into that frame of reference.

Why hasn’t Lidar replaced cup anemometers for TI? In short, because trust and traceability are
paramount. Wind turbine load models and certification tests have decades of legacy based on cup
measurements. Until recently, there was no widely accepted method to ensure a Lidar’'s Tl readings are
“cup-equivalent.” If one simply plugged raw Lidar Tl data into a turbine design calculation, the loads
might be mis predicted or overly conservative. Therefore, the wind industry has insisted on co-locating
Lidars with met masts to compare Tlcw vs Tlcup, and still often defaults to the cup data for final
assessments. Lidar technology’s obvious advantages (safety, remote autonomy, higher-height wind
measurements, flexibility in deployment etc.) have led to an increasing number of standalone Lidar
deployments. The simple lack of any mast and cup data from site have led to more focus than ever
being placed on demonstrating a credible, simple, transparent, multi-site approach that allows Tlcw to
become the new benchmark.
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The Challenge: Cross-technology validation and
standards divergence

Early research identified multiple reasons for the differences between Lidar and cup TI, including the
Lidar’s probe volume averaging, its circular scanning trajectory, and differing frequency response (a cup
has a mechanical response cutoff, whereas a CW Lidar effectively low-pass filters turbulence by
averaging across its beam). These factors mean that a Lidar and a cup in the same wind may report
different Tl values. The challenge for the industry has been to develop correction models to adjust Tlcw
to a cup-equivalent Tl (Tlce) that reproduces what a co-located cup would read. Over the past decade,
various approaches have been pursued:

Physics-based corrections: Some methods try to account for the physics of the measurement.
Physics-based models can be elegant and universally applicable in theory, and they tend to produce
“clean” corrections anchored in known physical differences. Pena et al. (2025) describes the “lidar-
turbulence paradox” and attempts solutions concludes that the turbulence tensor cannot be well
described from the ground without knowledge of the 3D components. In practice physics-based
models are not possible based on current physics.

Probabilistic and analytical models: Another approach treats the problem statistically. These
methods might assume an underlying distribution for true turbulence and model the Lidar’s reading
as a biased estimator. For example, a Bayesian inference method could estimate the true Tlcyp as
an unobserved variable with a probability distribution, given the Lidar measurement. The advantage
is that such methods can be robust and provide uncertainty quantification on the correction.
However, they require careful assumptions about the turbulence distribution and the Lidar’s error
characteristics. If those assumptions are wrong or overly simple, the model may not generalize well.

Data-driven (machine learning) models: These learn the relationship between Tlcw and Tlcup
empirically from co-located data. They can range from simple linear regressions to complex neural
networks. The pros of ML approaches are that they are versatile and fast to apply, capturing complex
nonlinear relationships if enough data is provided. The cons are dependence on the training data
and potential lack of interpretability and generality. A model trained on one site might not work at
another if the conditions differ outside the learned patterns — hence generalization is a key concern.

Given these varied approaches, an important effort has been to benchmark and validate them across
the industry. Organizations like the Consortium for the Advancement of Remote Sensing (CFARS) have
convened working groups to compare techniques. In a recent CFARS initiative, an open-source “T/
Adjustment Comparison Tool (TACT)” was developed to evaluate more than 15 different Tl adjustment
techniques side-by-side[1]. Participants (including wind farm owner-operators, consultants, OEMs, and
Lidar manufacturers) contributed data from 35+ sites to test how well different corrections bring Tlcw in
line with Tlcyp[2]. This kind of collaborative benchmarking underscores that no single method had been
universally accepted, and it aimed to identify best practices.


https://cfars.github.io/publications/#:~:text=This%20document%20introduces%20the%20Subgroup%E2%80%99s,reviewed%20article
https://cfars.github.io/publications/#:~:text=In%20this%20white%20paper%2C%20the,a%20total%20of%2035%20datasets

7[)\( Introducing METICE

Because of the criticality of Tl for turbine loads, standardized acceptance criteria have emerged to
evaluate whether a Lidar’s turbulence measurements are “good enough” to use in lieu of a met mast.
Notably, in late 2023 DNV published a Recommended Practice DNV-RP-0661 specifically addressing
the use of ground-based Lidar Tl for wind turbines[3]. This RP was the outcome of a Joint Industry
Project and defines two key error metrics for validation:

Mean Relative Bias Error (MRBE): the mean bias of Lidar vs cup Tl, expressed as a percentage of
the cup value.

Relative Root Mean Square Error (RRMSE): the scatter (standard deviation of errors) between
Lidar and cup TI, also normalized by the cup TI.

To accept a Lidar’s Tl for use (in flat terrain onshore or offshore, the scope of RP-0661[4]), DNV
specifies that these metrics must be within certain limits. While the RP document is proprietary, it is
reported that the acceptance criteria are roughly MRBE within £5% and RRMSE < 15%. In other words,
on average the Lidar’s Tl should not be more than 5% higher or lower than the cup’s, and the scatter of
differences should be no more than 15%. These are fairly tight constraints — for example, if the true Tl is
10%, the Lidar on average should read between 9.5% and 10.5%, with modest variability. This
approach is intentionally conservative, aiming to ensure that using Lidar Tl will not introduce significant
error into either energy or loads estimates. Indeed, one analysis noted that DNV’s +5%/15% criteria are
even more stringent than traditional site suitability requirements in some cases.

Around the same time, CFARS has been developing a complementary set of guidelines focused on site
suitability (turbine loading) acceptance. CFARS advocates for using non-relative error metrics —
essentially looking at absolute differences in Tl, binned by wind speed. Their framework defines “Best
Practice” and “Minimum Practice” thresholds for two metrics: the Mean Bias Error (MBE) per bin, and
the Representative Tl error. The Representative Tl is defined as the 90% exceedance threshold
(assuming a Gaussian distribution) from a given turbulence distribution, and is designed to describe the
more extreme fluctuations. These metrics were applied to the Tl estimates for floating lidar systems in a
joint work by Fugro and DNV (Kelberlau et al., 2023) to establish the best practice thresholds recorded
in Table 1. These thresholds have since been adopted to validate the EOLOS floating Tl correction
model (Rapisardi et al. 2024). In lieu of onshore specific thresholds for CFARS metrics, these criteria
have been adopted for our purpose.

The Fugro and DNV best practice is achieved if the Lidar's mean Tl in each wind speed bin is within
10.01 (1 percentage point) of the cup (MBE < 1%), and the representative Tl is within £0.015 (1.5
points). Minimum Practice loosens those to +0.02 and +0.03 respectively. Table 1 summarizes these
criteria:

Acceptance Metric Best Practice Minimum Practice

Binned Tl Mean Bias (MBE) <+0.01 (1% TI) <=0.02 (x2% TI)
Binned Representative Tl Error < +0.015 (+1.5%) < 0.03 (x3%)

Table 1: Fugro and DNV best and minimum practice for offshore Tl correction validation
(Kelberlau et al., 2023).

These thresholds are broadly in the same spirit as DNV’s — limiting bias to a few percent — but the
metrics are defined differently. DNV’s are relative (%) errors referenced to the cup, whereas CFARS
expresses absolute Tl differences (e.g. 0.01 Tl is 1 percentage point). For a typical mid-range Tl of 0.1
(or 10% turbulence), DNV’s +5% relative bias thresholds corresponds to a Tl value of £0.005 (or 0.5%
turbulence), which is stricter than the best practice associated with the CFARS’ metrics of £1%. On the


https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-lidar-measured-turbulence-intensity-for-wind-turbines-249937/#:~:text=This%20RP%20provides%20recommendations%20for,TI%20in%20a%20meaningful%20way
https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-lidar-measured-turbulence-intensity-for-wind-turbines-249937/#:~:text=Applicable%20standards%20are%20currently%20based,located%20met%20mast
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other hand, at very low Tl of 0.04 (or 4%), a £5% relative threshold corresponds to a Tl value of +0.002
(or £0.2% turbulence), which might be overly strict. The best practice thresholds stated for the CFARS
metrics give a flat £1% allowance regardless.

The Representative Tl criterion in CFARS has no direct analogy in DNV’s approach — it is aimed
specifically at capturing turbulence peaks that drive loads, ensuring the Lidar not only matches average
Tl but also the higher-end turbulence distribution within each wind speed bin.

Individual turbine manufacturers (OEMs) have also developed their own acceptance metrics, often tied
directly to turbine load effects. For example, Nordex has investigated using the difference in fatigue
damage predicted from Lidar vs cup data as a metric. In internal studies, Nordex introduced a “Damage
Index” based on turbine S-N fatigue calculations for a reference met mast (RMM) and a temporary met
mast or Lidar (TMM). They found that DNV’'s RRMSE metric, which weights all turbulence fluctuations
equally in time, “doesn’t correlate well with fatigue-relevant flow properties,” since fatigue damage
depends more on the distribution of turbulence over time than on short-term scatter. In some cases, a
Lidar dataset could formally meet DNV’s criteria yet still produce a significant (~14% higher) fatigue
damage prediction compared to the cup — implying that passing the DNV thresholds doesn’t guarantee
load equivalence. Conversely, certain datasets might fail a statistic like RRMSE while still yielding
negligible differences in cumulative fatigue damage. Because of this, Nordex and some other OEMs
lean toward directly evaluating allowable load difference. A common OEM guideline is that using Lidar
in place of a met mast should not change the calculated fatigue loads by more than about 5%. This
roughly corresponds to a £5% tolerance on a turbulence-related damage index, which Nordex found
many sites already meet even with raw Lidar data, and even more so with corrected data. Such OEM
criteria are inherently tied to the specific turbine and its sensitivity to turbulence, but they underscore a
practical point: the ultimate goal is not just matching Tl for its own sake, but ensuring turbine loads and
energy estimates remain accurate.

In summary, while DNV-RP-0661, CFARS, and various OEM internal standards all aim to validate Lidar-
derived TI, they differ in focus and stringency. DNV provides a general, conservative statistical envelope
for use of Lidar TI (primarily for energy yield and simple terrain site suitability). CFARS focuses on
turbine loading applications, introducing slightly different metrics that are arguably more load-relevant
(absolute biases, representative turbulence). OEMs may apply even more direct load tests or tighter
criteria for their turbines. These discrepancies can lead to confusion or overly restrictive use of Lidar: for
instance, a perfectly good Lidar dataset might be “false rejected” because it fails an RRMSE threshold
due to random scatter, even though the mean turbulence and loads would have been within an
acceptable level. The challenge for the industry is to reconcile these standards and come up with
methods (and metrics) that are both physically relevant and not overly prohibitive. Work has begun in
this field also within IEA Wind Task 52, a project under the International Energy Agency (IEA) Wind
Technology Collaboration Program focused on the Large-Scale Deployment of Wind Lidar.
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METICE: A new multi-site ensemble approach

ZX Lidars’ Multi-site Ensemble Turbulence Intensity Cup Equivalent (METICE) was developed against
this backdrop of challenges to provide a robust, generalizable correction model for Lidar TI. In essence,
METICE is a machine-learning ensemble transfer function that converts a CW Lidar’s turbulence
measurements into an equivalent cup reading (Tlce). What sets METICE apart is its novel architecture
combining multiple site-specific models with a Bayesian weighting scheme, combined with extensive
training and validation data sets that represent the best available tall mast and cup data.

Instead of training a single global model that attempts to learn all possible conditions, METICE is built
as an ensemble of Deep Neural Networks, each one trained on data from a different site. Concretely, if
co-located Lidar and met mast data from (say) 15 sites are available, METICE will train 15 separate
base models (ZX has used deep multi-layer perceptrons, DMLPs, for each). Each model learns the
relationship between Tlcw and Tlcup for the conditions at each site, effectively capturing local physics
and turbulence response specific to that location. These become a library of “experts.”

The next key ingredient is how METICE uses these experts when faced with new data from a site it has
never seen before. This is done through a Bayesian model selection framework using a Gaussian
Mixture Model (GMM). The GMM acts as a “regime mapping” tool: it looks at the input features of a new
10-minute period and estimates the probability that the conditions correspond to each of several pre-
defined regimes or clusters. In simpler terms, METICE’s GMM might recognize patterns like “high wind,
unstable atmosphere” or “moderate wind, stable atmosphere” as different regimes. Each of the site-
specific neural networks is associated with these regimes to some extent (based on its training data
characteristics). The model then assigns probabilistic weights to each neural network’s prediction
according to how relevant that model is for the current conditions. For example, if the new data shows
very high wind shear, and perhaps one of the ensemble models was trained on a site with similarly high
shear conditions, the GMM will give that model a higher weight in the ensemble prediction. Conversely,
models trained in very different regimes get reduced weight. This approach is akin to a “mixture of
experts” where the gating network (the GMM) decides which expert to trust more for each situation.

Through this Bayesian ensemble approach, METICE has and continues to be developed to incorporate
several key capabilities. One goal is to enable the framework to account for site heterogeneity: instead
of relying on one model to perform well everywhere, it is designed to leverage the diversity of training
sites and adaptively select the most relevant model components for new locations. Another focus is on
enabling uncertainty quantification. By representing predictions as an ensemble of multiple models -
each contributing with a probabilistic weight - the framework can estimate not only a corrected Tl value
but also provide a measure of confidence or spread in those estimates. Such information would allow
users to assess whether a small remaining bias is likely negligible, or warrants further consideration.
These enhancements to uncertainty treatment remain an active area of development, with particular
emphasis on improving robustness and interpretability for complex sites. Importantly, METICE achieves
these benefits with minimal input requirements. It was intentionally developed using basic 10-minute
statistics that any Lidar provides. The standard input features are: 10-min mean wind speed, 10-min
wind speed standard deviation (i.e. the raw Tl components), the measurement height, and a wind shear
coefficient. The shear can be calculated from the Lidar’'s multi-height data (e.g. using two heights’ mean
winds). These inputs capture the primary factors that affect the Tl relationship — wind speed level,
turbulence level, height (which correlates with the probe volume size and usually with turbulence scale),
and shear (which can be a proxy for stability or terrain-induced gradients). No external meteorological
data or mast measurements are required as inputs beyond what the Lidar itself records. This means



METICE can be applied in a stand-alone fashion on any ZX CW Lidar dataset, a critical practical
advantage. The output is simply a corrected turbulence intensity time series (Tlce) for each 10-min
period, ideally matching what a cup anemometer at the same height and location would have measured.

| Wind 10 Data |

v

| Preprocess Features |

Y1

| Model Averaging Algorithm |

I

Figure 1: METICE schematic representation showing the Bayesian averaging method applied to
an ensemble. The number of ensemble members has been reduced to 3 for the clarity of the
schematic. ANN is artificial neural network making prediction Y, GMM is Gaussian mixture
model assigning likelihood P(Y).

The METICE model was trained and tuned using a substantial database of co-located measurements.
The sites were predominantly simple terrain (to focus on fundamental atmospheric regime differences
without complex flow), and data were stratified by wind speed bins and stability classes during analysis.
A “leave-one-site-out” cross-validation was employed in validation; that is, each site in turn was treated
as an “unseen” site and had METICE models trained on all the other sites applied to it. This tests the
generalization capability: the ensemble must adapt to a truly new site each time.

Key advantages of METICE’s architecture can be summarized as follows:

Adaptive to regimes: By using regime-specific expert models, METICE preserves the “dynamic,
regime-specific, and site-unique physics” of turbulence behavior. It's not forced into a one-size-fits-all
formula; it can apply different corrections for, say, a stable low-turbulence nighttime period vs. a mid-
day convective period, as dictated by the ensemble weighting.

Performance-based weighting: The Bayesian selection framework essentially weights models
based on performance — it “decides what transfers across sites” by emphasizing the models that
historically performed best under similar conditions. This means new predictions are influenced most
by the training data that is most relevant, reducing the risk of applying a completely off-base
correction.

Scalability and maintainability: The architecture is inherently scalable — new training sites can be
added as new ensemble members without retraining from scratch, fitting into a modular design. If a
new kind of climate or terrain is encountered (e.g. a tropical site or a complex forested hill), ZX can
integrate a new co-located dataset as an additional expert model, thereby expanding METICE’s
knowledge base. This also future-proofs the model as the volume of validation data grows.
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A Robustness to data issues: The design requirements for METICE included being robust against
imperfect or incomplete data. Because it uses only 10-min summaries, it is relatively tolerant of short
gaps or sporadic outliers (as those would minimally affect binned statistics). The ensemble approach
also means no single model failure will derail the prediction — even if one model misbehaves, its
weight can be low. The developers also ensured the model is computationally efficient —a compact
ensemble that can be run quickly on large datasets or even in real-time firmware.

In summary, METICE represents a data-driven and probabilistic approach. It leverages the power of
machine learning (learning from many sites’ data) while embedding domain knowledge via its regime-
based weighting. By doing so, it aims to bridge the gap between Tlcw and Tlcup in a way that is
accurate, general, and transparent in its approach.

Validation Results: Performance Across Sites and Conditions

A thorough validation of METICE has been conducted to demonstrate its accuracy and reliability. In
aggregate, the model has shown excellent agreement with cup anemometer Tl across many sites and
heights, meeting or exceeding the contemporary acceptance criteria (DNV, CFARS) in nearly all cases.

A Multi-site validation: In the initial validation study, METICE was tested at 16 sites with 64 unique
height levels (20 m to 200 m), none of which were used in the training of their corresponding model
(each was treated as “new” via the leave-one-out approach). The results were quantified via several
metrics:

A Orthogonal regression slope: Plotting METICE’s predicted TICE against actual cup Tl for each
site/height, an orthogonal regression was used to fit a line (slope 1.0 being ideal). The slopes
clustered tightly around 1.00 in all height bands, indicating METICE is essentially unbiased. In fact,
most fitted slopes were within about +2% of unity, and nearly all within +4%. This holds true for low
heights (<60 m), medium (60—120 m), and high (>120 m) — an important result showing no significant
height-dependent bias in the model.

A CFARS Binned Mean Bias: For each wind speed bin (across all sites/heights, totalling 557 bins),
the mean error (Lidar-minus-cup) was evaluated. METICE achieved extremely low biases — 553 out
of 557 bins (99.3%) fell within the +1% TI error “Best Practice” bound, and 100% of bins were within
1+2% (Minimum Practice). In other words, METICE essentially met the strict CFARS site-suitability
bias criterion for virtually all conditions tested.

10
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Histogram of Mean Bias Error
for Valid CFARS Wind Speed Bins Across All Sites
All Heights - All Conditions [582 Bins]
BP 568/582 97.6% | MP 582/582 100.0%

7771 Best Practice
Minimum Practice

15% 1

10% A

5%+

Proportion of Valid Bins

% 4
-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
Mean Bias Error [-]

Figure 2: CFARS site suitability histogram showing MBE binned by wind speed for all evaluated

sites.

A CFARS Representative TI: Similarly, the Representative Tl (roughly the 80th percentile turbulence)
was computed for each bin and compared. METICE’s predictions were also outstanding here: 551 of
557 bins (98.9%) were within +1.5% (absolute TI) of the cup value, and all bins were within £3%.
This demonstrates that not only does METICE get the mean Tl right, it also accurately captures the
distribution’s spread to remain within 1.5 percentage points of the cup’s representative turbulence in
~99% of cases.

Histogram of Representative Tl Differences
for Valid CFARS Wind Speed Bins Across All Sites
All Heights - All Conditions [582 Bins]

BP 558/582 95.9% | MP 581/582 99.8%

[ Best Practice
Minimum Practice

10% -

5%+

Proportion of Valid Bins

9% -
-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
Representative Tl Difference [-]

Figure 3: CFARS site suitability histogram showing Representative Tl differences binned by
wind speed for all evaluated sites.

These results collectively indicate that METICE provides a reliable, unbiased cup-equivalent Tl for
simple and moderately complex sites, with performance that essentially clears the most stringent
industry benchmarks. A visual way to appreciate this is that if one plots the METICE-corrected Tl versus
the met mast T, the points lie very close to the 1:1 line, with negligible bias or scatter. In fact, ZX
reports the R? values of METICE vs mast Tl are very high (plots show R? close to 1.0 across sites) and

11
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the regression slopes nearly exactly 1.0. Such strong agreement across thousands of hours of data in
557 wind speed bins builds confidence that METICE can generalize well to new “simple” sites.

It is worth noting that METICE’s validation was done using orthogonal regression rather than ordinary
least squares, to account for measurement uncertainty on both the Lidar and cup sides. This method
avoids bias in slope estimates that can occur if one treats the cup measurements as error-free. The fact
that slopes still centre on 1.0 implies METICE is not introducing any systematic bias.

Complex terrain and advanced corrections: The real test for any Tl model is how it handles
complex flow conditions — sites with significant terrain variation, forestry, or other factors causing
highly non-uniform and non-stationary turbulence. By design, the initial METICE training focused on
simpler sites, but ZX Lidars has been actively investigating the model’s application to complex
onshore sites. A dedicated study was performed at a very complex site (and a few others with
varying complexity) to see how METICE might be integrated with traditional flow corrections.

At a complex hilly, forested site (for example, Project “P1” in ZX’s test dataset, characterized as “Very
Complex — forestry on a hill, slopes >10%”), a baseline comparison showed the challenges: raw Lidar Tl
exhibited increasing bias and error with height, often failing to meet DNV’s acceptance criteria at higher
levels. This is expected — in complex terrain, the flow differs between the Lidar location and mast, and
the Lidar’'s volume averaging likely smooths out some small-scale turbulence, especially noticeable
higher above the ground. In ZX’s trials, the Mean Relative Bias Error and RRMSE for raw Lidar Tl
tended to grow with height, sometimes exceeding the +5% or 15% targets at the upper measurement
heights.

To tackle this, ZX applied a two-step correction: first using a CFD-based flow correction, then METICE.
The CFD correction provided height- and direction-dependent adjustment factors to account for terrain-
induced differences (essentially scaling the Lidar’s wind speed or turbulence to better match what a
mast at the exact mast location would see). When the Lidar data was pre-corrected by these CFD
factors and then fed into METICE (a configuration termed “CFD + METICE”), the results were
impressive. Compared to the raw case (or even simpler corrections), CFD + METICE showed a
significant improvement, especially at the complex sites. ZX reported “significant improvement with
respect to the previous corrections and the raw case; less difference with height in the MRBE and
RRMSE.” In other words, the combination largely removed the bias that was growing with height,
flattening the error profile.

Quantitatively, one can look at how many wind speed bins fell within the acceptable error thresholds for
each method. In an internal analysis, ZX counted the percentage of wind bins that passed certain site
suitability (SS) criteria for each correction. The progression was telling: the raw Lidar might have only,
say, ~40-60% of bins within requirements at higher heights; the first and second corrections raised that
fraction; and METICE with CFD pushed it to near 100% compliance in both site suitability and loads-
specific bins. In fact, when considering a turbine loads perspective (e.g. requiring very low bias to
protect fatigue life), the CFD+METICE data achieved far more wind bins within a 5% loads-difference
tolerance than the raw data did. This aligns with the OEM viewpoint — METICE’s correction was
accurate enough that in a Nordex-style comparison of damage equivalent loads, the vast majority of
conditions fell within a £5% band (whereas raw Lidar might have shown some conditions with 10% or
more load deviation).

In summary, the validation results confirm METICE’s effectiveness across a broad spectrum:

For normal, simple or moderately complex sites, METICE by itself (with basic inputs) produces cup-
equivalent Tl with negligible bias and scatter, essentially solving the Lidar Tl problem for those
cases. It meets stringent criteria like the best practice of Kelberlau et al., (2019), for the CFARS
metrics ~99% of the time.
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A In highly complex terrain, where additional site-specific factors come into play, METICE can be
combined with flow modeling (CFD) to greatly improve performance. In trials, this combination
brought even very complex-site Lidar data to within industry-acceptable error margins. This is a
crucial finding — it suggests that with the right preprocessing, METICE’s learning can extend to
complex flows as well, a scenario previously considered very challenging for remote sensing
devices.

A METICE outperformed earlier generation correction models in these tests, especially visible in the
reduction of height-dependent errors and in achieving compliance for turbine load evaluations.

These results make a strong case that METICE is an enabling technology for wider use of Lidar in wind
projects. By delivering turbine-equivalent turbulence measurements with known accuracy, it addresses
the validation gap that standards like DNV-RP-0661 sought to cover, and it provides a path to meet
even stricter OEM requirements or future best practices.

13



LS

Introducing METICE

4 Use cases and applications for industry

stakeholders

With its demonstrated performance, METICE unlocks new possibilities for various stakeholders in wind
energy. Different users will find value in METICE’s cup-equivalent Tl in distinct ways:

Turbine OEMs (Design Load Assessments): Turbine manufacturers can use METICE-corrected
Lidar data to confidently assess site turbulence for load calculations. Traditionally, OEMs require on-
site met masts to provide Tl data for final load verification of a project. With METICE, a ZX Lidar
alone can supply Tl data that is equivalent to a cup anemometer, meaning OEMs can trust these
measurements for performing fatigue damage analysis and extreme load checks. For example, an
OEM could deploy a Lidar at a prospective site, gather turbulence data, apply METICE, and then
input that Tlce into their load simulation models (aeroelastic models) to see if the site falls within the
turbine’s design envelope. The benefit is significant: it reduces the reliance on installing a tall met
mast (which is costly and time-consuming) purely for loads measurements. OEMs also gain spatial
flexibility — they could instruct a Lidar to measure Tl at multiple turbine locations or heights (e.g., hub-
height and top-tip) sequentially, which is impractical with single-point mast instruments. Furthermore,
METICE'’s built-in uncertainty estimate allows OEMs to quantify margins. For instance, if METICE
indicates a small remaining bias with £0.2% uncertainty, an OEM can incorporate that small
uncertainty into a safety factor for loads. Overall, METICE helps OEMs ensure site compliance with
turbine TI limits and can accelerate the site certification process by providing reliable turbulence data
faster.

Wind farm developers (Site Classification and Energy Assessment): Developers planning
projects can use METICE to perform site classification and wind resource assessment without full-
time met towers. One key early step in project development is determining the site’s turbulence
category (which affects what class of turbine is suitable or if special conditions apply). With a Lidar
deploying METICE, developers can classify a site’s turbulence intensity over the project area quickly,
by moving the Lidar around or by using multiple Lidars — all the Tl data can be corrected to cup-
equivalent on the fly. This enables mapping of turbulence across a large site (for example, identifying
if ridgelines have higher Tl than valleys, etc.), which can inform micro-siting (turbine placement to
avoid high-TI spots) and even layout optimization (perhaps spacing turbines differently if turbulence
is high to reduce wake interactions). For Energy Yield Analysis (EYA), turbulence plays a secondary
but notable role: higher turbulence can reduce turbine power performance slightly and increase wake
mixing (which might reduce wake losses). By having accurate Tl data, developers can refine the
power curve assumptions for the site and improve wake loss models, leading to a more accurate
energy estimate. Another benefit for developers is campaign efficiency — deploying a ZX Lidar with
METICE means that even without a met mast, they can gather bankable wind data (including
turbulence) to satisfy investor or lender technical due diligence. This can shorten the measurement
campaign timeline or allow measurements in remote areas where building a mast is infeasible. In
short, METICE gives developers a tool to characterize site wind conditions fully (windspeed + TI)
with just remote sensors, speeding up development and potentially saving significant met mast
costs.

Consultants and Independent Engineers (reducing uncertainty and expanding coverage):
Wind consultants who analyze data for financing or performance guarantees can leverage METICE
to reduce the uncertainty in projects that rely on Lidar. Historically, if a project didn’'t have a met mast
for turbulence, consultants would either exclude turbulence from consideration (risky for loads) or
apply very conservative assumptions (penalizing the project with uncertainty adders or lower
expected life). With METICE, consultants can obtain validated turbulence measurements from
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ground-based or even floating Lidars, and thus increase their confidence in stand-alone remote
sensing campaigns. For example, an independent engineer could accept METICE-corrected Tl data
as part of a resource assessment report, knowing it has been validated to industry best practices
(e.g., CFARS guidelines). This can make stand-alone Lidar campaigns bankable, a long-sought goal
of the industry[5][6]. Additionally, consultants can use METICE to analyze more locations within a
site. Instead of just one mast location’s turbulence representing an entire site, a consultant might
have METICE data from several Lidar positions, allowing a more robust assessment of site-wide
turbulence variability. This is especially valuable in complex terrain or large sites where turbulence
can vary. It effectively derisks the project by providing a fuller picture of the turbulence environment.
Moreover, for operational wind farms, consultants could use METICE with nacelle-mounted or
scanning Lidars to measure turbulence across turbine rows (for performance troubleshooting or life
extension studies), again getting cup-equivalent data to compare with design assumptions. Overall,
METICE enables consultants to provide better advice and tighter uncertainty ranges to clients,
backed by data that was previously unavailable without towers.
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5 Deployment and implementation guidance

METICE is delivered in a manner that suits different user needs, either embedded directly in the Lidar's
firmware or as a post-processing software tool. This flexibility allows METICE to be used in real-time
field deployments as well as retrospective data analysis. Below is a high-level workflow and guidance
for using METICE in typical project scenarios:

Lidar installation and configuration: Deploy the ZX ground-based Lidar (e.g., ZX 300 or ZX 300e)
at the site of interest. Ensure it's configured to record the necessary 10-minute statistics (mean wind
speed, standard deviation, etc.) at the heights of interest. In a firmware-integrated scenario, the
Lidar’'s onboard software would run the METICE algorithm automatically on the 10-min data. If
METICE is not running in real-time on the device (e.g., using an older Lidar or one without the
firmware update), then the raw 10-minute data should be recorded for later processing using an
appropriate version of the ZX ZPH2CSV software.

Site-specific adjustments (if needed for complex sites): If the site is complex terrain or has
unique features, it is recommended to perform a flow analysis to complement METICE. This could
involve running a Computational Fluid Dynamics (CFD) model, using a CFD conversion service
provider (Meteodyn, WindSim, DNV, Deutsche WindGuard, Ramboll, Natural Power etc.), or a linear
flow model (e.g., WRF or WindMap) to compute wind speed and turbulence adjustment factors for
the Lidar’s location relative to a reference. For instance, a CFD might indicate that at a certain wind
direction, the Lidar underestimates turbulence by X% due to a terrain blocking effect. These
correction factors can be applied to the Lidar's measured mean wind or sigma before input to
METICE. In practice, one might implement this by feeding METICE “adjusted” wind speed and
standard deviation values (e.g., sigma multiplied by a factor derived from CFD that varies with height
and wind direction). ZX’s validation has shown that doing this for very complex sites greatly improves
the outcome. For most simple or moderately complex sites, no CFD correction is necessary —
METICE can be applied directly to the Lidar data.

METICE processing: Run the METICE model on the dataset. If using firmware-integrated METICE,
this is automatic and continuous — the user will receive Tlce in real time every 10 minutes, just as
they would get wind speed readings. If using post-processing, the user would input the recorded data
(typically a .zph or database of 10-min stats) into the ZX ZPH2CSV software. The software will apply
the ensemble model to each data record and output the cup-equivalent TI. This process is
computationally light (designed to be efficient for potentially large datasets), so even years of data
can be processed quickly on a standard PC.
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Conclusion: Advancing Lidar adoption with METICE

METICE represents a significant advancement in the integration of Lidar technology into
mainstream wind resource and site assessment practices. By providing a validated and accurate
translation of Lidar-measured turbulence intensity to cup-equivalent values, METICE effectively
removes one of the last barriers for replacing or supplementing met masts with remote sensors.

For the industry, the value proposition of METICE is clear: it enables cost-effective, flexible wind
measurements without sacrificing the fidelity required for turbine design and certification. Projects in
remote or complex locations that once struggled with obtaining reliable turbulence data can now deploy
a ZX Lidar and trust that the turbulence data will be on par with a mast. This opens the door to wider
deployment of Lidars for site suitability, not just for mean wind speeds as has been common, but for the
full suite of design parameters. In doing so, METICE supports the wind industry’s drive to reduce costs
and timelines — fewer met masts mean lower upfront CapEx and faster project development, and more
data from Lidars means potentially better optimized turbine placements and designs.

The collaborative efforts like CFARS underline that the industry is eager for solutions that standardize
remote sensing for loads. METICE’s performance — meeting 99% of stringent bias targets across
hundreds of test cases — demonstrates that a machine learning approach can indeed achieve the level
of rigor needed. It essentially provides the “cup anemometer truth” from a Lidar, which can be readily
used in commercial energy assessments and load verifications with confidence. This directly de-risks
the use of Lidar for site suitability assessment, echoing the CFARS mission to accelerate remote
sensing adoption[7].

Looking forward, METICE is not a static solution but a framework that can continue to evolve. Future
improvements will likely include:

Broadening the training dataset: Incorporating data from an even wider range of sites — for
example, very complex terrains, offshore wind farms, different climate zones (tropical storms,
monsoonal winds, arctic conditions, etc.). As more co-location datasets become available, new
ensemble members can be added to extend METICE’s applicability. The model’'s scalable
architecture means it can only get better with more data. One can envision a future version of
METICE that has “seen everything” — from flat deserts to mountainous forests — and thus can handle
any new site with ease.

Offshore and Floating Lidar applications: While the current METICE has been tested mainly on
ground-based Lidars, the principles can apply offshore. Floating Lidars introduce additional
complexity (platform motion affecting measured turbulence). Research (e.g., Kelberlau et al. 2023,
Rapisardi et al. 2024) has begun addressing floating Lidar turbulence corrections. METICE could be
combined with motion compensation algorithms to correct floating Lidar Tl data. In fact, the same
ensemble approach could learn from floating Lidar vs mast comparisons (some exist from offshore
trials) to create a specialized model.

Uncertainty quantification: Efforts are underway to refine how model uncertainty is represented
and propagated through the Bayesian ensemble, ensuring more reliable Tl prediction interval
estimates under highly variable site conditions. These improvements aim to enhance both the
robustness and interpretability of METICE outputs, providing users with clearer insight into model
reliability in challenging environments

In conclusion, METICE provides the wind industry with a practical, proven solution for cup-equivalent
turbulence intensity from Lidar. It stands at the intersection of meteorology, data science, and wind
engineering, translating cutting-edge algorithmic insight into tangible project value. By enabling remote
sensing to fully step into roles once reserved for cup anemometers, METICE helps drive the industry
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forward into a more flexible and data-rich future. The ultimate vision of “mast-free” wind farm
assessments — where all necessary wind characteristics are measured by portable, cost-effective
devices — is materially closer thanks to METICE. As the model continues to learn and expand, we can
expect even greater confidence and adoption, solidifying Lidar’s place in wind energy from resource
assessment through to site certification. The ensemble approach pioneered here may also inspire
similar techniques for other measurement translation challenges in wind energy and beyond, where
merging physics and machine learning yields powerful results.

18



LN

7

Unrestricted

Introducing METICE

References

1. Kelberlau, F. and Mann, J., ‘Better turbulence spectra from velocity—azimuth display scanning’,
Atmospheric Measurement Techniques, 2019.

2. Pefia, A., Yankova, G. G. and Mallini, V., ‘On the lidar-turbulence paradox and possible
countermeasures’, Wind Energy Science, vol. 10, no. 1, 2025, pp. 83—-102.

3. Sathe, A. et al., ‘Can Wind Lidars Measure Turbulence?’, Journal of Atmospheric and Oceanic
Technology, 2011.

4. DNV, ‘DNV-RP-0661: Lidar Measured Turbulence Intensity for Wind Turbines’, DNV, 2023.
5. CFARS, ‘Site Suitability Initiative White Paper’, CFARS Publications, 2021.

6. ZX Lidars and NRG Systems, ‘Advancing Cup-Equivalent Tl from Continuous Wave Lidar’,
Proceedings of WESC 2025.

8. Nordex, ‘Lidar Tl Project Presentation: OEM Perspective on Lidar Tl and Load-Based Validation’,
Nordex Group, 2025.

9. Blue Aspirations, ‘ZX 300M Lidar on Floating Platform — Tl Correction Meets CFARS Best Practice’,
Blue Aspirations, 2025.

10. Kelberlau, F. et al., ‘Assessment of Tl Estimates from Floating Lidars’, 2023.

11. Rapisardi, G. et al., ‘Machine Learning Approach to Correct Tl| Measured by Floating Lidars’, 2024.

Links

[1]12] [5] [6] [7] Publications « CFARS
https://cfars.github.io/publications/
[3][4] DNV issues new recommended practice on Lidar measured turbulence intensity for wind turbines

https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-Lidar-measured-
turbulence-intensity-for-wind-turbines-249937/

19


https://cfars.github.io/publications/#:~:text=This%20document%20introduces%20the%20Subgroup%E2%80%99s,reviewed%20article
https://cfars.github.io/publications/#:~:text=In%20this%20white%20paper%2C%20the,a%20total%20of%2035%20datasets
https://cfars.github.io/publications/#:~:text=results%20from%20this%20benchmarking%20activity,reviewed%20article
https://cfars.github.io/publications/#:~:text=connect%20RSD%20TI%20benchmarking%20activities,measurements%20in%20site%20suitability%20assessment
https://cfars.github.io/publications/#:~:text=Finally%2C%20to%20ensure%20the%20delivery,measurements%20in%20site%20suitability%20assessment
https://cfars.github.io/publications/
https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-lidar-measured-turbulence-intensity-for-wind-turbines-249937/#:~:text=This%20RP%20provides%20recommendations%20for,TI%20in%20a%20meaningful%20way
https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-lidar-measured-turbulence-intensity-for-wind-turbines-249937/#:~:text=Applicable%20standards%20are%20currently%20based,located%20met%20mast
https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-lidar-measured-turbulence-intensity-for-wind-turbines-249937/
https://www.dnv.com/news/2023/dnv-issues-new-recommended-practice-on-lidar-measured-turbulence-intensity-for-wind-turbines-249937/

LZ{Lidars
About Us

In 2003 we released the first commercial wind lidar, pooling decades of fibre laser research from the science, security and energy industries.
Designed specifically for the wind industry our Lidar has paved the way for many of the remote sensing devices seen in the market today. Our
original lidar technology continues to innovate with world firsts such as taking measurements from a wind turbine spinner and being the first to
deploy an offshore wind lidar, both fixed and floating. Our Lidars have also now amassed millions of hours of operation across 15,000+
deployments globally spanning two decades of commercial experience. Some of our proudest achievements are listed below; these are the
earliest reported examples that we are aware of from open publications.

- The first wind lidar to make upwind measurements from a turbine nacelle

- The first and original commercially available lidar for the wind industry

- The first wind lidar to investigate the behaviour of turbine wakes

- The first wind lidar to be deployed offshore on a fixed platform

- The first wind lidar to take measurements from a turbine spinner

- The first wind lidar to be signed off against an industry-accepted validation process

- The first wind lidar to be deployed offshore on a floating platform

- The first wind lidar to re-finance and re-power a wind farm

- The first wind lidar to be proven in a wind tunnel

- The first wind lidar to be used with very short masts and secure project financing

- The first wind lidar to be accredited for use with no or limited on-site anemometry for project financing by DNV GL
- The largest batch of single-type lidar verifications against an IEC met mast

- The first lidar designed specifically for offshore use, with the longest warranty available - 3 years as standard

- The first wind lidar to support safe lifting on a jack-up vessel

- The first wind lidar SCADA integrated on operational wind farms in replacement of site met masts

- The first wind Lidar to be installed across a wind farm on a Lidar-per-turbine basis, uniquely mapping wakes across a wind farm
- The first wind Lidar to satisfy all criteria for IEC Classification

- The first wind Lidar to take wind measurements from a drone

- The first wind Lidar to be accepted for bankable energy assessments in complex terrain standalone (without a met mast)
- The first wind Lidar to attract more than £150bn+ of investment into wind energy projects

- The first wind Lidar to be fully integrated into a retrofit wind turbine controller for Lidar Assisted Control

- ZX Lidars moves to Willow End!

- The first wind Lidar with a 5 year warranty and 5 year planned service interval as standard

- The first wind Lidar to achieve 21 - 200m IEC Classification and 300m Performance Verifications
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