PO.181

IEC 61400-50-3 – compliant wind speed measurements with a ZX TM nacelle-mounted lidar: A case study in uncertainty analysis

John Medley ZX Lidars

Uncertainties of 1.3% can be achieved when using a ZX TM nacelle-mounted lidar to measure wind speed.

After accounting for terrain, the only significant uncertainty contribution in this case study was the uncertainty in the calibration of the lidar.

An IEC-compliant assessment of ZX TM nacelle-mounted lidar measurements has been reported by DNV [1], following the IEC 61400-50-3 standard [2].

Here we present a thorough case study deriving uncertainties for hub-height horizontal wind-speed (HWS) measurements made by a ZX TM on a 3 MW turbine in central USA.

ZX TM is a continuous-wave lidar that makes 50 line-ofsight (LOS) wind speed measurements every

Wind yaw misalignment

1-second scan. Precise motion sensors ensure LOS measurement data is used from locations

close to hub-height. Wind field reconstruction (WFR) is

Intermediate values LOS wind speeds

Tilt, roll, range, etc.

Final values Horizontal wind speed

Uncertainties in "final values", such as HWS, are derived from contributions from

treated as a "black box" in IEC 61400-50-3:

- Intermediate value calibration;
- Intermediate value sensitivity to environmental variables (EVs);
- Terrain considerations;
- Operational conditions the assumption of zero uncertainty due to EV effects on WFR is dependent upon a suitable evidence base.

References

[1] Device Type Uncertainty Assessment following IEC 61400-50-3 for the ZX TM nacelle lidar, DNV Report 10448127-HOU-R-1, Issue B, Nov 2023.

[2] Wind energy generation systems - Part 50-3: Use of nacelle-mounted lidars for wind measurements, IEC 61400-50-3:2022.

[3] ZX TM measurement uncertainty following IEC 61400-50-3: The influence of uncertainties in the intermediate values, ZX Lidars report: ZXL/CS/RPT/00005.

Uncertainty propagation through WFR is assessed by differentiation of the WFR algorithm with respect to intermediate values and combining the contributions:

$$U_{S} = \sqrt[2]{\left(\frac{\partial S}{\partial \theta_{i}}.U_{\theta_{i}}\right)^{2} + \left(\frac{\partial S}{\partial \theta_{c}}.U_{\theta_{c}}\right)^{2} + \left(\frac{\partial S}{\partial \varphi'}.U_{\varphi'}\right)^{2} + \left(\frac{\partial S}{\partial V_{L}}.U_{V_{L}} + \frac{\partial S}{\partial V_{R}}.U_{V_{R}}\right)^{2} + \left(\frac{\partial S}{\partial r}.U_{r}\right)^{2}}$$

where s is horizontal wind speed, θ_i , θ_c and φ are lidar inclination, scancone and scan-phase angles respectively, r is measurement range and V_L and V_R are LOS speeds from left and right of the scan. U_S , etc, denote the uncertainty in the parameter in the subscript. Note that U_{V_I} and U_{V_R} are correlated as ZX TM uses a single scanning beam.

Empirical sensitivity analysis results indicate significant correlation between LOS speed accuracy and two EVs: shear and inflow angle:

(Figure from [1], reproduced courtesy of DNV)

It is unclear how either of these EVs could affect a horizontal lidar beam, but for this study the uncertainty is assigned to the lidar measurement.

Theoretical sensitivity analysis is required for EVs that cannot be assessed empirically. From in-house analysis [3], non-linear variation of wind speed within the probe has been identified as the dominant contribution.

Analysis of the evidence base (without height correction) adds a small operational uncertainty at low wind speeds.

In this case study, a calibrated ZX TM was deployed on the nacelle of a turbine of hub height 89m, rotor diameter D=127m, measuring at a range of 283m (2.2D). Data from the sector [154°, 200°] forms part of the evidence base in [1] as the terrain is simple enough.

Analysis of terrain data in 10° sectors yields campaign mean values for inflow (assuming wind flow follows terrain along the lidar probe length) and the difference between hub and measurement heights:

Sector	154°-160°	160°-170°	170°-180°	180°-190°	190°-200°	Total / Mean
Observations	924	873	612	549	300	3258
Slope/Inflow	-0.9°	-0.1°	0.0°	+0.3°	+0.7°	-0.17°
Height difference	+3.9m	+2.9m	+1.6m	+0.6m	-0.1m	+2.3m

Uncertainty due to LOS sensitivity to EVs is calculated by multiplying the difference between campaign and calibration means by the sensitivity for the significant EVs:

EV	Calibration Mean	Campaign Mean	Sensitivity	Uncertainty		
Shear	0.216	0.170	1.339	0.06%		
Inflow	+0 12°	-0 17°	0.544	0.16%		

Uncertainty due to measurement height difference can be assessed using equation (A.11) from [2], if no height correction is applied. Using a wind-shear exponent of 1.5 times campaign mean gives a value of 0.65%.

However, if height correction is applied, equation (A.12) from [2] should be used. As ZX TM automatically accounts for lidar inclination, measurement height uncertainty has been taken as 1 m. With a shear exponent uncertainty of 0.05 and LOS speed uncertainty of 1.3%, the resulting contribution is negligible (0.01%).

Combining contributions (assuming height correction is applied) leads to the following combined uncertainties in measured HWS:

	WS	Uncertainty contribution (%)									Combined		
(m	n/s)	LOS cal	LOS shear	LOS inflow	LOS nonlin	op lidar	terrain	inc	cone	phase	range	(%)	(m/s)
4	1.0	1.41	0.06	0.16	0.07	0.16	0.01	0.09	0.04	0.00	0.03	1.43	0.06
6	5.0	1.29	0.06	0.16	0.07	0.00	0.01	0.09	0.04	0.00	0.03	1.31	0.08
8	3.0	1.25	0.06	0.16	0.07	0.00	0.01	0.09	0.04	0.00	0.03	1.27	0.10
10	0.0	1.22	0.06	0.16	0.07	0.00	0.01	0.09	0.04	0.00	0.03	1.24	0.12
12	2.0	1.26	0.06	0.16	0.07	0.00	0.01	0.09	0.04	0.00	0.03	1.28	0.15

IEC-compliant HWS uncertainties of 1.3% have been assessed for this ZX TM deployment. This figure is dominated by the LOS speed calibration uncertainty.

For this simple site, uncertainty would increase to 1.4% if terrain effects were not accounted for. In more complex terrain, careful analysis of the influence of the terrain on HWS is recommended to avoid extra measurement uncertainty.

