Get in touch
ZX Lidars
Want to know more?

Get in touch to find out more about our Lidars or services.


+44 (0) 1531 651 000
ZX Lidars Willow End Blackmore Park Rd Malvern WR13 6BD You may find it useful to use the What 3 Word codes to reach the following office locations: Willow End Reception - CABINET.ASKED.CLERICS ZX Lidars Goods In - CUSTODIAN.VOUCHER.PRIVATELY
Back to top
 
31/10/14 -

US Strides Forward with Lidar Controlled Turbine – Achieved with NREL, DNV GL, University of Stuttgart and ZephIR Lidar

COLORADO, US — 29 October 2014— An industry ‘landmark’ moment has been confirmed today thanks to NREL, Stuttgart University and DNV GL with the control of an operational wind turbine with a ZephIR wind lidar.

4-1
Figure 1: A wind turbine under lidar control in the US, with NREL, DNV GL and ZephIR Lidar

“This new installation of a ZephIR DM has taken a new direction in reducing yaw misalignment by providing the opportunity for full turbine yaw control through lidar measurements. Working with a group of experts within each field on this project – wind turbines, controls and lidars – has delivered a landmark moment for the industry and one we are all very proud of. We eagerly anticipate the next steps in Lidar Controlled Turbine.” said Andrew Scholbrock, Field Test Engineer at NREL.

Further, the usage of the ZephIR lidar system for feed-forward pitch control delivers a reduction of structural turbine loads enabling OEMs with the opportunities to achieve a lower cost of energy for the industry through more optimal turbine design.

The field testing was conducted on the US DOE/NREL CART3 test turbine, which is part of the comprehensive test facilities at the National Wind Technology Center (NWTC) in Boulder, Colorado. The geographical location and the easy access to the turbine’s control system make the CART3 an optimal test environment for the evaluation of new and advanced control algorithms of wind turbines.

The ZephIR DM wind lidar is a circularly-scanned, continuous-wave coherent Doppler sensor. Zephir Ltd. notes that the ZephIR DM wind lidar offers unique and unmatched benefits in turbine-mounted applications from power curve measurements to full turbine control as demonstrated in this project. Optimised for installation on a nacelle roof, ZephIR DM generates high-resolution line-of-sight Doppler measurements every 20 ms through a period of a continuous circular scan of 1 second. Industry research demonstrates that this lidar scan geometry and frequency is very well suited to lidar feed-forward turbine control.

The measurements taken by ZephIR calculate various wind field quantities, such as rotor equivalent and hub height horizontal wind speeds, vertical wind shear, wind veer and wind yaw misalignment relative to the turbine axis at ranges from 10 m to over 300 m out in front of the turbine. These measurements are key to applications such as Power Curve measurements, turbine optimisation and End of Warranty inspections, in addition to turbine control. Continuous wave lidar and its range focussing approach ensures high sensitivity, permitting measurements even in the very clear air often experienced at this NREL facility. The ZephIR DM lidar recorded valid signals throughout the 8 month measurement period, operating reliably, without intervention, in a wide range of atmospheric conditions, including heavy blizzards, low cloud and temperatures down to -22°C.

The successful lidar yaw control means that the yaw direction of the wind turbine can be controlled by a lidar which could lead to a reduction in yaw misalignment and increased power production if the traditional yaw controller has unaccounted errors in it. These errors can include calibration offsets, induced errors by the rotor wake, or due to sensor failures leading to a biased signal as was the case in this deployment, where ZephIR DM was able to aid in a health-check for the vane sensor and help to target the root cause of the variance in performance. Figure 2 shows the reduction in yaw misalignment using the lidar yaw controller.

Further, the successful collective pitch control means that a reduction of the rotor speed variation could be seen of approx. 25% in standard deviation. Collectively the success of these pitch turbine control experiments have paved the way for subsequent trials on larger, 2 MW class, onshore turbines and ZephIR Lidar confirms it is already working with major OEMs in this area.
4-2
Figure 2: This plot shows the yaw misalignment as a function of rotor speed for the lidar yaw controller as well as the baseline nacelle mounted wind vane yaw controller.  The left plot shows the wind yaw misalignment as measured by the lidar wind direction measurement.  The right plot shows the wind yaw misalignment as measured by the meteorological (met) mast wind direction.

“ZephIR is the perfect lidar technology choice for turbine control. For a decade we have invested significant efforts to be the world first in each and every application of turbine-mounted lidar,” noted Alex Woodward, Head of Product Development at ZephIR. “Now, with the dedication from NREL, the University of Stuttgart and DNV GL and their passionate team of industry experts, we can help the sector achieve full turbine control. Additional benefits of load reduction can then also be realised. High resolution, continuous wave, coherent technology is second to none in this application and ZephIR is the only lidar built on this robust, lower cost laser design.”

A full paper on this project is available from: research@zephirlidar.com

Zephir Ltd. (ZephIR Lidar) designs ZephIR 300 and ZephIR DM wind lidars, the best wind lidars in the world, along with supporting services such as power, communications and installation. ZephIR Lidar operates globally with Trusted Service Providers supporting clients with every aspect of a wind energy campaign onshore, offshore and turbine-mounted.

Press Desk:
press@zephirlidar.com
+44 (0) 7825 159 082

© 2014 Zephir Ltd. All rights reserved. ZephIR, Zephir, ZephIR 300, ZephIR DM, ZephIR Power and Waltz are trademarks of ZephIR Lidar. Other company and product names may be trademarks of their respective owners.
Visit www.zephirlidar.com for more information.

Find The Right Lidar for you

We can help you find the right Lidar for your needs by answering a few questions

Find The Right Lidar for you

What do you need wind data for?

Image Caption 1

Site Assessment

Image Caption 2

Operational Measurements

Image Caption 3

Other

Find The Right Lidar for you

Where do you need to gather data?

Offshore

Onshore

Both onshore and offshore

Find The Right Lidar for you

How long do you need this data for?

<1

PERFECT FOR:

Small scale projects

Temporary events

Less than 1 year

1-2

PERFECT FOR:

Small scale projects

Temporary events

1-2 years

3+

PERFECT FOR:

Long term projects

Operational measurements

3 years +

5

Our Recommendation
ZX Lidars - ZX Measurement Services

Learn more
Our Recommendation
ZX Lidars - ZXTM

Validate your wind turbine performance and reach financial close with nacelle based Lidar Power Performance Testing. Optimise asset performance with operational power curve and yaw measurements. Develop wind farm Lidar control strategies with wake steering and load control.

Power Performance Measurements and Testing to IEC standards including IEC 61400-50-3:2022

Accepted by all major turbine OEMs

Unique measurements of wakes and complex flow

True wind shear and wind veer measurements across the whole rotor

Learn more
Our Recommendation
ZX Lidars - ZX300M

Reduce your offshore wind farm project and financial uncertainty by measuring wind characteristics higher than a met mast and by mobilising measurements across a whole site with wind Lidar. Integrated in to all major Floating Buoy platforms.

Wind resource assessment and measurements offshore

Responsible for 95%+ of all new offshore wind measurements globally

£150bn of finance invested in clean energy from ZX 300M data

10-300m range - the widest range available of any Lidar

Learn more
Our Recommendation
ZX Lidars - ZX300

Reduce your onshore wind project and financial uncertainty by measuring wind characteristics higher than a met mast and by mobilising measurements across a whole site with wind Lidar. Be flexible within your planning applications by using a low visual impact, low height device.

Wind resource assessment and measurements onshore

Bankable standalone wind data in simple and complex terrain

Extreme environments, proven operation for 10 years

10-300m range - the widest range available of any Lidar

Learn more

Thank you for your interest in our products.

It looks like we need more information to be able to help you.

If you click on the button below and leave your information, one of our support team will get in touch to help you find the right product.

This website uses cookies
This site uses cookies to enhance your browsing experience. We use necessary cookies to make sure that our website works. We’d also like to set analytics cookies that help us make improvements by measuring how you use the site. By clicking “Allow All”, you agree to the storing of cookies on your device to enhance site navigation, analyse site usage, and assist in our marketing efforts.
These cookies are required for basic functionalities such as accessing secure areas of the website, remembering previous actions and facilitating the proper display of the website. Necessary cookies are often exempt from requiring user consent as they do not collect personal data and are crucial for the website to perform its core functions.
A “preferences” cookie is used to remember user preferences and settings on a website. These cookies enhance the user experience by allowing the website to remember choices such as language preferences, font size, layout customization, and other similar settings. Preference cookies are not strictly necessary for the basic functioning of the website but contribute to a more personalised and convenient browsing experience for users.
A “statistics” cookie typically refers to cookies that are used to collect anonymous data about how visitors interact with a website. These cookies help website owners understand how users navigate their site, which pages are most frequently visited, how long users spend on each page, and similar metrics. The data collected by statistics cookies is aggregated and anonymized, meaning it does not contain personally identifiable information (PII).
Marketing cookies are used to track user behaviour across websites, allowing advertisers to deliver targeted advertisements based on the user’s interests and preferences. These cookies collect data such as browsing history and interactions with ads to create user profiles. While essential for effective online advertising, obtaining user consent is crucial to comply with privacy regulations.